Статьи

НОУ ІНТУЇТ | лекція | Випадкові події, випадкові величини. Їх закони розподілу і числові характеристики

Властивості диференціальної функції розподілу:

  1. Диференціальна функція розподілу неотрицательна, т. Е. Властивості диференціальної функції розподілу:   Диференціальна функція розподілу неотрицательна, т
  2. Якщо всі можливі значення випадкової величини належать інтервалу (a, b), то

Так як диференціальна функція розподілу дорівнює f (x) = F '(x), то можна записати

т. е. межа відносини ймовірності того, що неперервна випадкова величина прийме значення, що належить інтервалу т до довжини цього інтервалу (при ), Дорівнює значенню диференціальної функції розподілу в точці x.

Аналогічне (6.1) визначення дається в механіці для визначення щільності маси в точці (якщо маса розподілена вздовж осі X за законом F (x)), тому в теорії ймовірності для диференціальної функції розподілу f (x) часто використовується термін "щільність ймовірності в точці" .

На підставі (6.1) запишемо:

Імовірнісний сенс диференціальної функції розподілу на підставі (6.2) такий: ймовірність того, що випадкова величина прийме значення належить інтервалу Імовірнісний сенс диференціальної функції розподілу на підставі (6 наближено дорівнює добутку щільності ймовірності в точці x на довжину інтервалу або (на графіку) площі прямокутника з основою і висотою f (x).

Диференціальну функцію розподілу часто називають законом розподілу ймовірностей безперервних випадкових величин.

При вирішенні прикладних задач стикаються з різними законами розподілу ймовірностей безперервних випадкових величин. Часто зустрічаються закони рівномірного і нормального розподілу.

Примітка. Відзначимо, що законом розподілу ймовірностей дискретних випадкових величин, називають відповідність між можливими значеннями випадкової величини і можливостями їх появи. Ймовірності можна задати таблично, аналітично (біноміальний розподіл по формулі Бернуллі, розподіл Пуассона) або графічно (у вигляді багатокутника розподілу).

Закон рівномірного розподілу ймовірностей неперервної випадкової величини використовується при імітаційному моделюванні складних систем на ЕОМ як первісна основа для отримання всіх необхідних статистичних моделей. При цьому, якщо спеціально не обговорений закон розподілу випадкових чисел, то мають на увазі рівномірний розподіл.

Розподіл ймовірностей називають рівномірним, якщо на інтервалі (a, b), якому належать всі можливі значення випадкової величини, диференціальна функція розподілу має постійне значення, т. Е. F (x) = C.

Так як

то

Звідси закон рівномірного розподілу аналітично можна записати так:

Графік диференціальної функції рівномірного розподілу ймовірностей представлений на Мал. 6.5

Інтегральну функцію рівномірного розподілу аналітично можна записати так:

Графік інтегральної функції рівномірного розподілу ймовірностей представлений на Мал. 6.6

Закон розподілу повністю характеризує випадкову величину. Однак часто закон розподілу невідомий і доводиться користуватися, так званими, числовими характеристиками випадкової величини. До них відносяться:

  1. Математичне сподівання M,
  2. Дисперсія D,
  3. Середнє квадратичне відхилення .

Математичне сподівання дискретної випадкової величини X - це сума добутків всіх її можливих значень Математичне сподівання дискретної випадкової величини X - це сума добутків всіх її можливих значень   на їх ймовірності на їх ймовірності .

Математичне сподівання неперервної випадкової величини X, можливе значення якої належить відрізку [a, b] - це певний інтеграл

Останнє визначення (для неперервної випадкової величини) отримано на підставі того, що ймовірність попадання X в інтервал Останнє визначення (для неперервної випадкової величини) отримано на підставі того, що ймовірність попадання X в інтервал   приблизно дорівнює приблизно дорівнює ..

Математичне сподівання випадкової величини (як дискретної, так і безперервної) є невипадкова (постійна) величина. Вона характеризує середнє значення випадкової величини.

Новости

Где купить бленда

На одной из семейных фотосессий, ребенок уронил мою бленду, они конечно же оплатили принесенный ущерб, но я не знал где купить замену именно такого качества. Поискал в интернете, но доставка долгая,

Держатель для iphone 5 в машину

Мобильный телефон - это то, без чего современная жизнь просто невооброзима, этот гаджет настолько уверенно и стремительно занял место в нашей жизни, что без него практически каждый буквально из дома

Аренда платья для фотосессии ????
Вы часто видите красивые фотокарточки девушек в роскошных платьях    Большинство думают, что не смогут себе позволить данную фотосессию, ведь покупать платье " на один раз" никому не хочется    Для

Подарочная упаковка
Есть мнение, что упаковка для подарка – это все равно что одежда для человека. Соответственно, по ней будут судить и о чувстве стиля. Конечно, не самого презента, а о вашем. Новый год – это отличный повод

Регулировка пластиковых окон
Во-первых, найти на боковой поверхности створки цапфы – подвижные части прижимного механизма. Их детали выступают над поверхностью больше других элементов. Во-вторых, осмотреть цапфы и обнаружить эксцентрики

Входные двери
Белгород прекрасный город, но криминогенная обстановка в нем продолжает оставаться напряженной. Поэтому входные двери в белгороде должны быть не только красивыми, но и прочными, устойчивыми ко взлому

Заказ суши
Большинство из нас знают свои страхи. Мы можем бояться высоты, пауков или полетов на самолете. Один из наиболее распространенных страхов-это боязнь голода. При столкновении с такой ситуацией происходит

Линолеум
Для любого помещения, с любым функциональным назначением, важно выбрать подходящее по всем параметрам напольное покрытие. Для этого следует учитывать множество нюансов, от технических и стилистически

Книги подарочные
Говорят, книга — лучший подарок. И это правда. Ведь что бы нам ни подарили, радость от этого рано или поздно иссякнет: или когда мы съедим этот подарок, или когда наиграемся им. А книга способна


 PHILIP LAURENCE   Pioneer   Антистресс   Аромалампы   Бизнес   Игры   Косметика   Оружие   Панно   Романтика   Спорт   Фен-Шуй   Фен-Шуй Аромалампы   Часы   ЭКСТРИМ   ЭМОЦИИ   Экскурсии   визитницы   подарки для деловых людей   фотоальбомы  
— сайт сделан на студии « Kontora #2 »
E-mail: [email protected]



  • Карта сайта